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1) Introduction to Mountain Effects

Large mountain regions with heights extending over a considerable portion of the earth’s
atmosphere have a profound effect on the atmospheric circulation. It is commonly accepted that
mountains significantly affect the weather in many parts of the world, and the large-scale distribu-
tion of orography has important effects on the atmospheric general circulation and hence on the
regional and global climate. Air flow in the vicinity of large mountain barriers creates many
unique weather anomalies of varied space and time scales. At the climatic end of the spectrum is
the large deflection of storm tracks due to the production of blocking highs by mountain ranges.
The role of mountains in maintaining extensive midlatitude arid regions has been suggested by a
several studies such as Broccoli and Manabe (1992). They concluded that the large mountain
chains produce stationary waves and that the dry regions occur upstream of the trough of these

waves (shown in Fig A).
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Fig A. Observed distribution of arid and semiarid climates according to the Koppen climate clas-
sification (after Oliver 1973).

On the shorter time scales (few days) regional mountain chains are an enhanced source of
synoptic disturbances. Lee-cyclogenesis has attracted a great deal of recent attention in particular
on the lee of the Alps. One typical lee-cyclogenesis event occurred on 3-6 March 1982 during the

Alpex special observing period. In this case, a deepening upper level trough approached the Euro-



pean continent and the Alpine massif. A distinct cutoff low formed at 300 hPa directly south of

the Alps within 24 hours, as shown in Fig B.
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Fig B. Development of the 5 March 1982 Alpine cyclone in the 300-hPa geopotential height and
velocity fields for the selected times. The contour interval is 60 dam. (after Orlanski and Gross
1994).

Very intense downslope winds are generated due to mountains in only a few tens of kilo-
meters scales as well. Every few years the eastern slope of the Colorado Front Range (part of the
Rocky Mountains) experiences a damaging windstorm, with peak gusts as high as 60 m/s. Simi-
lar winds are also abserved along the lee slopes of many other mountain barriers. The local names

for these winds include tha Alpine foehn, the Rocky Mountain chinook, the Yugoslavian bora and



the Argentine zonda. A very authoritative review on the subject was written by Ronald Smith
(1979)1. In his book a considerable attention was devoted to short scale mountain waves and their

impact on the weather.
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Fig. C Cross-section of the potential temperature field (K) along an east-west line through Boul-
der, as obtained from research aircraft on 11 January, during a downslope windstorm in Boulder.
To the extent that the flow is steady and adiabatic, these isentropes are good indicators of the
streamlines of air motion. Note that while the predicted vertically propagating nature of the distur-
bance is evident from its great vertical extent and from its tilted phase lines, the amplitude is much
larger than predicted from linear theory (see Fig 3). (From Lilly and Zipser 1972, Smith article)

A disturbance is created when stably stratified air is forced to rise or deflected by a topo-
graphic barrier. The energy associated with the disturbance is carried away from the mountain by
waves. The wavelength of those waves could be as small as few tens of kilometers, (known as
mountain waves) or extend to the planetary scale as quasi-stationary Rossby waves. In this note
however more attention will be given to the larger synoptic and planetary response. Let us start

then by defining some parameters important for describing the different regimes.

1.“The influence of Mountain on the Atmosphere” Voidances in Geophysics, Vol 21.



1.1 Meso-scale analysis

To illustrate how such dimensionless parameters can be derived, let us consider a stratified
fluid with stratification frequency N flowing horizontally at a speed U and encountering an obsta-
cle of width L and heightj(Fig 1). We can think of a wind in the lower atmosphere blowing

over a mountain range.

Fig 1. Situation in which a stratified fluid encounters an obstacle, forcing some fluid parcels
to move vertically against gravity.

The time passed in the vicinity of the obstacle is approximately the time spent by a fluid par-
cel to cover the horizontal distance L at a speed of U, thatligU (advective time scale). This
time is crucial for determining the role of the earth’s rotation and the stratification. For instance, if
>1/2mt (whereQ is the local value of the earth rotation) a time longer than a pendulum day,
the flow will strongly feel the influence of rotation and the response will obey the quasi-geo-
strophic balances. However#1/2[0 ™1 we could consider the flow to be in a non-rotating
atmosphere and only stratification will constrain the fluid. Let us start with this liral 200 7.

The vertical displacement close to the topography should,Jrce the vertical veloc-

ity W=Uh, at the lower boundary. Due to the effect of stratifica@¢n) the displacement cause

potential temperature perturbations on the order:

AO@ =="h =2 h =@ Eq. 1.1

Where®(z) is the fluid potential temperature upstream a?mlgV@Od@(z)/dz The temperature

variation gives rise to pressure disturbances that scale via the hydrostatic balance, as:



OgPl=g0"/0,H=BH
where H is the internal scale Eq. 1.2 and 84, is the buoyancy
The internal scale H can be simply derived by considering the balance of forces in the horizontal,
the pressure gradient force must be balanced by the acceleration of the particle. Using the hydro-

static balance

du _ Cc,00T  BH Eqg. 1.3

since particles conserve B for an adiabatic process. The horizontal advection of B is balanced by
the vertical advection given the relation B/LAW/U. The continuity equation allows to scale the
term y, as:

=WI/H Eqg. 1.4
Note that y represents the horizontal divergence and cannot be assumed to bg dépamnds on
the amplitude of the perturbation u velocity, which is usually much smaller than U.

Replacing Eq. 1.4 in Eq. 1.3 and using Eq. 1.2. the internal scale is given by

H=U/N Eg. 1.5
The vertical wave-length for mountain waves is given by H. It is easy to verify that:
m/HFENh /U =Fr
Fr7Nh

Called the Froude Number Fr, is a measure of the stratification (note that in some work the Froude
number is U/NR). It is easy to see that the vertical gradient of buoyancy Bz :B?hl,ﬁ/N,
Bz=N?Fr. When the stratification due to the disturbance is equal to or larger than the basic stratifi-

cation convection and instabilities could be generated. This condition is achieved when the Fr>1.

2.) The Anelastic system.

The momentum equation in the anelastic system is:

0 0 _ :
5t T VOV Wt + fkx v = —Cp@pUm+ Diss. Eq. 2.1



V is the horizontal velocity vector with components (u,v) and w the vertical component of the
velocity; O IS the reference potential temperature anidd the exner pressur(@/po)k; cpisthe
specific heat constant and Diss represent the dissipative forces.
The other equations in the anelastic system are the modified continuity equation:

[e V+1/p(pw),=0 Eq 2.2

equivalent tdJe V+ w,=0 for the incompressible case and the thermodynamic equation:

ai +Wd—Z+WF(z) =0

Remember thdt(z) =d®(z)/dz is the lapse rate of the state at rest @igithe deviation potential
temperature of that state. This equation is the parallel of the density equation in the incompress-
ible system wher8 has the same role as the dengity
The system is complete with hydrostatic balance

QgL,=go/O, Eq. 2.4
that replaces the vertical momentum equation. This assumption is valid in so fgitas<h.

2. 1 Gravity Waves

We will assume a simplified atmospheric state no rotation f=0 and the amplitude of the distur-
bance to be small compared with the basic state variables. As in Fig 1, let us assume a basic state
in which U=U, and N=N, andpg=const. This is justified if the internal scale is smaller than the

scale height (33km). The linearized anelastic equations take the form;

ou, you - 9P
ot 0X 0X Eq. 2.5



6v+Uav __a_P

3 ax -~ dy Eq. 2.6
9, U@+WI' =0
ot 0Xx Eq. 2.7
ou, ov 0w _
ox 0y 0z Eq. 2.8

where P=c@grt Because all the coefficients in the preceding linear equations are constant, we
have a wave solution of the form

e(lx+ky+mz-wt)
Replacing the solution in the system of equations 2.5-2.8 for a non-trivial solution requires that
the frequencyw be given by:

2 2
(w—-1U)2 = N2@ Eq. 2.9
m

Without the hydrostatic approximationis given by:

(1 +12)

—| 2 = N2—
(w=1U) k?+12 +m?

Eq. 2.9

where the terms k, I, m are the wavenumbers and N is the Brunt-Vaisala frequency previously
defined (Eq. 1.1). It is easy to see thatlepends on N and the angle of the k wavenumber vector

to the horizontal plarfelt is also possible to show that:



Cph= 22 Eqg. 2.10

the phase velocity is parallel to the wavenumber vector and

Cg = Owik Eq. 2.11

The group velocity is perpendicular to the wavenumber vector, this is a consequence of Eq 2.8.
Replacing the solution in the divergence equation, it is simple to show that the velocity perturba-

tion is also perpendicular to the wavenumber vector and so the direction of the energy flux.

2.2 Lee Wave solution.

Gravity waves can be generated by a number of processes, convection, orographic forcing etc. For

orographic forcing, let us assume a basic state asd discussed before. The wind is blowing over a

corrugate topography that only varies in x; then the y variation can be eliminated (k=0) in this

problem. The steady solution will requires that w=0 and the dispersion relation 2.9 became:
22/U2-12

Only vertically propagating waves are possible if N/U>| and for N/U>>|, the hydrostatic limit,

m=N/U as was shown in our previous analysis. The wave structure in the framework fixed to the

earth (Fig 2) is steady and all density surfaces undulate like the terrain, with no vertical attenua-

tion but with an upwind phase tilt with heiéht

1. To show that writd4=Kcosasco®,k=Kcogasinv n=Ksina
1. The figure was copy from the book “Introduction to Geophysical Fuid Dynamics” by Benoit Cushman-
Roisin



Fig 2 Structure of the mountain wave in the case of strong stratification or long
wavelength (N > [U). Note the absence of vertical attenuation and the presence of a
phase shift with height. The group velocity with respect to the ground is oriented upward
and downwind. The pressure distribution, with highs on wind-facing slopes and lows
on flanks in the wind’s shadow, exerts a drag on the moving air mass.

2.4 Numerical simulation.

The importance of severe weather on the lee of mountains like downslope windstorms have been
discussed by Simth (1979), Durran (19"9@r)d others. Durran showed that the development of

the windstorms including wave breaking in the upper troposphere was triggered by formation of a
hydraulic-jump-like disturbance in an elevated inversion near the mountaintop level (as shown in
Fig C). He has performed non-linear simulations of the flow over an isolated mountain using a
two dimensional model with an upstream sounding and successfuly predicted severe windstorm

conditions. A solution of the model for lee-wave conditions is shown in Fig 3.

1. Book on Atmopsheric Processes over complex terrain W. Blumen Editor Meteorological Monographs
AMS.
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Fig 3. Isentropes in a two stratified layers atmosphere flowing over an isolated mountain at a non-

dimensional time ut/a=20. The figure shows a solution with a basic flow that has a change in strat-

ification at 3km. NI=0.5Nu.
A detailed look at the effects of nonlinearity on the drag and surface wind was done by Durran

(1990). His conclusion is that the reflection of the waves by a change in stratification can lead to a

similar behavior as described for the hydraulic jump. The drag

_ o _0h
D = I—oo p&dx

For linear waves the drag BN, uh, /4.

11



and for the nonlinear solution shown inFig3 is shown in Fig4.
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Fig 4. Pressure drag (solid) and maximum surface wind speed perturbation (dashed) as a function

of Froude Number. The drag is normalized by the linear drag.

3) Quasi-Geostrophic Response

In general, non-linear dynamics are very complicated. However, the systems are extremely
simplified if a time scale selection is considered. The dynamics for periods longer than a 24hs are
substantially different than those for shorter time scales. In partiadilarger or smaller than Ir(
is the time scale of the transient response equal to the inverse of the frequ'érmyd f the local
coriolis parameter) determines two different regimés>1 the earth rotation is important and
the circulation is mainly horizontal and in geostrophic balance. On the otherfdvarfcl the
flow is vertical and primarily influenced by stratification as discussed in the previous sections. Let

us now consider the limif >>1.

12



3.1 Scale -analysis:
To derive the quasi-geostrophic system we will make use of the anelastic system Eq. 2.1-2.4. We
assume the following scales:

t=T*tn, x,y=L(xn,yn), z=H*zn, v=U*vn, w=W*wn, f=Ffn

Where “n” indicates the non-dimensional variables and which will be dropped in the following
equations.
Let us assume that the dynamic variables are deviations of a state at rest v,W&Qzamlin
hydrostatic balance with a basic potential temperdBn(@)=0y+O(z)=Oy+I z. Furthermore,
assumeforthemomentDiss=0. Thenondimensionalmomentumeqisgivenby:

M

o)
oo U WU 9 _ _fp°o
DTENV+HJLEVED?/+DH%Na—zv+(UF)fR><?/——D - %jn Eq. 3.1

Only the terms in parenthesis contain dimensional variables. Note thatamdee deviations
from theTt, M is a non dimensional amplitude suclHE that characterizes the exner pressure
gradients. The atmosphere and the ocean for Tf>>1 are in geostrophic balance; the last term on
the LHS is equal to the pressure gradient forces. Dividing all the terms by UF, we have the corio-
lis force of order unity the first term on the LHS is small because FT>>1. The advective terms
(second and third of LHS) are small only if the Rossby nhumber (U/LF)=Ro <<1. Since the pres-
sure forces should balance the coriolis force

M=(UFL/cpdy) Eq. 3.2

Characteristic thermodynamic and mid-latitude atmospheric values are:
H=10km, F=0.0001$ U=10m/s, L=1000km@,=300K, cp=1004 J/(K kg)=1004(mf)*
M=6K/km

M=(UFL/cpOy)~ 1/300 Eq 3.3

The selection of the time scale T is rather arbitrary and will depend on the phenomena to be

describe. For the planetary scale, a relevant time scale is the advective time scale T=L/U.

13



Eq. 3.4
RoL+ v BREOnd v+ fx v = ~Om
Rocat 0z
Since TF>>1, FL/U>>1 or (U/LF)=Ro<<1
To chose the scale of W, we should use the Potential Vorticity conservation argument.
o3
02

JAVA o1

£+fo_ g
Uaz O

=

whereZ is the vertical component of the relative vortic(t\jx- uy)

¢ _ fd Eq. 3.5
dt - hAzart?
since( scales as U/L and d/dt as U/L, further moe/dt scales as W. Then
W35 R®I/L)U and (W/HF)=R? Eg. 3.6

Finally if f=f, , the main balance of the expression above igelstrophic relation.The exner

R P 0 [ _
ETB_V + VOV + ROWa_sz”L fkxv = —0Om Eq 3.7

pressuratis proportional to a stream functignsuch as V=KiJ @and @ =1tf(. The other
eguations in the anelastic system are the modified continuity equation:

(e V+1/p(pw),=0 equivalent tale V+ w,=0 for the incompressible case

and the thermodynamic equation:

14



de  do _ Eq 3.8

Remember thé€ is the lapse rate of the state at rest 8nslthe deviation potential temperature of
that state. This equation is the parallel of the density equation in the incompressible system where
0 has the same role as the dengityhe scale for® is (L/U)WT .

Recalling W= R(H/L)U, substituting for g in B=@ /@, (the buoyancy) and since N, the Brunt-
Vaisala frequency of the atmosphere at rest, is defined aSI_D(@@]l/Z, B scales as:

BARH Eq 3.9
The Buoyancy is Rsmaller than the amplitude of the buoyahtfyl of the state at rest.

Furthermore, at these scales the atmosphere and oceanbydestatic and geostrophioal-
ance. Geostrophic balance has been achieved by requiigIlRwhere as for hydrostatic bal-
ance.

@l 1/Hd1vdz=Bb or the scale &,[1/H=B

Since M=(UFL/cp®y) therelaton NH/FL=1 should be satisfied. Eq. 3.10
The length scale L satisfying this relation is often called the Rossby radius of deformation or con-
versely H Rossby depth of penetration. If surface forcing is acting over the ocean with a given
length L the maximum depth that can be achieve in a geostrophic balance flow is H. Similarly if
there is a body force with a height H acting in the interior of the fluid, the horizontal extent will be
L.

The (NH/FLY is also known as the Burger number that is defined(ﬁﬁlRThe Richardson num-
ber

RiZNUZ2, is a ratio of buoyancy and vertical shear
The scale is (NH/()and when multiplied by theR=(U/LF)? gives (NH/FLY . This ratio
should be the order of unity. For small Ro<<1, Ri should be large>>1. For these scales in the
atmosphere Rd0.1 and for the ocean R0.01 whereas the Ri0O0.

Ro<<1 and (NH/FP)L are the basic scaling for theasi-geostrophic approximation.

3.2 Quasi Geostrophic Equations

15



Expanding the variables in power of Ro:
v=vo+Rowy+RAV,+O(RC)
W=Ro(H/L)(Wo+RN;+RPW,+O(Rc))

TE=TL(2) + M (Ty+HROM+RATL+O(RG))
b=b,(2) + N°’HRo(ky+Rob,+Rc?b,+ O(RA))
f=f+RoB(y-Yo)+O(RCT)

He)=N>*N(zf

Substituting in the equations of motion:

Roory -+ v T+ Ryw sl fkxy = ~im
p=b
Oe V+1/p(pw),=0
and
Eq 3.14
db, W@ + WN2 =0
dt dz
The O(1)
fokxvo=-U geostrophic balance
[evp=0 non divergent
Poz=ly hydrostatic

Eqg. 3.11

Eq. 3.12
Eq 3.13

wo=-(1/N(z)2)dbo/dt vertical velocity is determine by heat eq.

@o=ty/f; where@o is the geostrophic stream function

vo=kxgo

bo=fo@0z In the quasi geostrophic system all the variables can be

derived fromo to an order of O(Ro0).

16



P 0 ~
o+ Vo Vo * 1EOR xVy+B(y— yO)I? x ¥y = -0y Eq 3.15

Hevy=-1/p(pWo), Eq 3.16

taking the curl of the first order momentum equation and be¢alse vy={0= chpo.

Eq. 3.17
%Zo”o g5+ £ o0, +Byg = 0

The changes in the vertical component of the relative vorticity are accomplished by advecting
planetary vorticity and stretching by convergence.
Combining the vorticity equation and the thermodynamic equations we can derive the conserva-

tion of pseudopotential vorticity or quasigeostrophic potential vorticity Q

3.3 Quasigeostrophic Potential Vorticity
Since the horizontal divergendeeVv,=-1/p(pwg), from the potential temperature eq.
wo=-(1N(z)2)dbo/dt
the advection by the geostrophic flayl 100 can be expressed as the Jacobigd) and
remembering thadg=fp@y;
wo=-(f/N(2)2)(@0,t+3(@. §0,))
multiplying by p and differentiating by z the divergence is given by:
Oev1=1/p(fop/N(2)2) @oA+I@ ©o2)z
The divergence of the first order velocity is given by the thermodynamic equation to zero order

and can be replaced in the relative vorticity equation, finally the quasigeostrophic Potential Vortic-

0
%QO + vO EDQOE = EQO + J(([)O, QO) =0 Eq 3.18

17



ity Qp is given by:

Qo= +B(Y-Yo) +fo2/P(P/N(2)200)z Eq3.19
Qo is only conserved in a quasigeostrophic system.

The conservation of Q and the relation of the vertical velocity at the boundaries

wo=-(fo/N(2)2) (@I (@ @y,)) solely defines the quasigeostrophic system.

3.4 Orographic Forcing (Brian Gross)
3.4.1 Steady State
The dimensional potential vorticity equation for steady motion in a quasigeostrophic system char-

acterized by uniform potential vorticity is
0
D200+ === E: Q, = constant Eqg. 3.20

to zeroth order in the Rossby number. If we make the following assumptions and approximations:

f-plane (3=0)

suniform N

*Boussinesq approximatio (= constant in (1))
*Qp=0 (zero potential vorticity)

*H=fL/N (vertical scale is the Rossby depth)

then the nondimensional potential vorticity equation becomes Laplace’s equation
2

D2¢0+0 0_ g Eq.3.21
2
Boundary conditions 0z

Flow over terrain of height,,, that satisfies the free-slip condition at the boundary must also sat-

isfy the (nondimensional) kinematic condition

Wy = Frivye Oh(x y)] Eq. 3.22
at z=0, to zeroth order in the Rossby number. Here,
Nh,

is the Froude number as before, which for quasigeostrophic flow must be small according to the

18



scaling used to derive the quasigeostrophic system. However, for steady flow the potential temper-
ature equation at z=0 is

Voe Oby+wy, =0 Eq. 3.24
so that

Vo e U[by+ Frh] = J(¢y by +Frh) =0 Eqg. 3.25.
The solutions that will be discussed here will satisfy (3.25) by specifying isentropic terrain for
which
by = —Frh(x,y) Eq 3.26

at z=0. This represents a cold perturbation along the topography. An example is shown in Fig. 5.

Note that with this scaling, the only nondimensional parameter appearing in the problem is the

19
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Figure 5. Distribution of potential temperaturg-bg (top) and I (bottom) illustrating how a
cold perturbation can produce an isentropic lower boundary. Thig &solution to the

guasigeostrophic system.

3.4.2 Two-dimensional solutions

Consider a uniform flow (of nondimensional magnitude 1) over a ridge of infinite north-south

extent. The flow perturbations induced by the ridge are assumed to be independent of y. In this

case, the governing equations become ., o
0
b0, 9% _
ox2 072

20
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with

_ 9% _ _
by = 3 - —Frh(x) atz=0 Eq. 3.28
The corresponding solutions to Laplace’s equation (3.27) will be determined by the boundary

condition at the upper boundary

3.4.3 Semi-infinite atmosphere

The appropriate solution to (3.27) in an unbounded atmosphere is given by (Smith 1979a

0o = —y—%Tlog[X2+(Z+ d)?] Eq.3.29
which corresponds to a source of strengtt ,2=(0,-d). Then
_ 0% _
Ug = oy 1 Eqg. 3.30

corresponds to the incoming uniform flow,
%o _ p

Vg = X = T (Z+ d)2 Eq 3.31
is the meridional velocity induced by the ridge, and
0
by = o __p__z+d Eq. 3.32

0z 2Tx2 + (z+ d)2
is the induced buoyancy perturbation, representing the cold air over the ridge. Although the actual

geopotential streamfunction (3.29) is unbounded, both the velocity and buoyancy perturbations
decay away from the ridge. According to (3.28), the topographic profile is a bell-shaped curve
given by

Frh(x) = 24 Eq. 3.33

2Tix2 + d2 -
The strengthu and the positiod of the source under the “ground” (z=0) may be used to create a

1 Smith, R.B., 1979a: The influence of mountains on the atmospAdrances in Geophysicgol. 21, Academic Press,
87-230.
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ridge of the desired shape. An example of this solution is shown in Fig. 6.
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Figure 6. The quasigeostrophic solution for steady flow over a semi-infinite ridge in

a semi-infinite atmosphere. The plots show (top) total buoyancy (solid) and perturba-

Now according to the thermodynamic equation
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_dz _ dby

Wo_a_—.a , Eq.3.34
the displacement d&-surfaces from their upstream value is
_ _ 0bg _ M z+d
r](x, Z) = _bO = —a—z = E{m Eq. 3.35.
and the displacement area under each isentrope is
J’n(x, 2)dx = % Eqg. 3.36,

—00

which is a constant independent of height. According to (3.36), as the maximum displacement of
a0-surface decreases with height, its horizontal breadth increases.

One consequence of (3.36) is the creation of regions of cyclonic relative vorticity upstream and
downstream of the ridge, as shown in Fig. 6, which are associated with vortex tube stretching as
fluid parcels enter regions where theurfaces become vertically separated. Directly over the

ridge, however, the separation@$urfaces decreases from its upstream value, and vortex tube
compression generates anticyclonic relative vorticity.

Implicit in this potential-vorticity conservation argument is that mass conservation requires par-
cels to decelerate where thesurfaces become vertically separated upstream and downstream of
the ridge and accelerate whésurfaces approach one another over the ridge. These accelera-
tions imply a disruption of pure geostrophic balance, and cyclonic and anticyclonic curvature are
produced in these respective regions by the unbalanced pressure gradient forces. Indeed, the hori-
zontal divergence associated with vortex tube stretching and compresgtoresthe next higher

order approximation to pure geostrophic flow that is the hallmark of quasigeostrophic theory.
3.4.4 3-D Solution for Semi-infinite atmosphere

The solution to (3.27) in a semi-infinite atmosphere also corresponds to a source of gtegngth

(x, %, 2 = (0,0,—d) , given in three-dimensions by

= _y+ B
bo y+4nr Eq. 3.37
where
r = Jx2+y2+(z+ d)? Eqg. 3.38.
Then
_ Ky
u, = 1+-+= Eq. 3.39,
0 47r 3 g
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vy = —2X Eq. 3.40,

47ir3
b, = H(z*+d) Eq. 3.41,
0 413 d
and
_ pd
Frh(x,y) = Eq. 3.42

which corresponds to an isolated mountain with circular height contours. Appropriate vajues of
andd for a given topographic profile may be determined from (3.42). The streamfunction at

z=Frh(x,y) andz=3.0 is shown in Fig. 7. Note that the closer spacing of the streamlines north of
Pon Yon
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Figure 7. Geostrophic streamfunction (26) at z=Frh (left) and z=3.0 (right). The

the mountain in Fig. 7 indicate larger zonal velocities there, while the zonal flow is decreased
south of the mountain. In fact, if the Froude number is large enough (>2.5 in the present case), the
geostrophic flow may be decelerated to rest. However, this would violate the scaling assumptions

used in deriving quasigeostrophic theory, in particular (3.).
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The vertical component of relative vorticity is
L o, 3RO

bo = 43T 20
which is negative (anticyclonic) near the mountain (siRednd positive (cyclonic) but weak far

Eq. 3.43,

from the mountain (larg®). All of the dependent variables (3.37)-(3.43) possess axial symmetry
for the circular mountain (3.42).The displacemerfi-stirfaces satisfies

Ir](x, y, 2dxdy = % Eq. 3.44
so that the volume under aBysurface is coﬁgtant. The upward displacemeftsirfaces
decreases with height while the horizontal extent of the displacement increases, which produces
the cyclonic vorticity far from the mountain by the same mechanism as in the two-dimensional
solution.
Some aspects of the solution (3.37) are shown in Fig. 5. Most features of this solution are very
similar to those of the two-dimensional solution in a semi-infinite atmosphere shown in Fig. 6.
The major distinguishing feature is that the anticyclonic vorticity is stronger and the cyclonic vor-

ticity away from the mountain is weaker in the isolated mountain solution.

Schematics of the Stratified quasi-geostrophic flow over an isolated mountain.

—

T . L. . - e - -

The vorticity dynamics in a stratified quasi-geostrophic flow over an isolated mountain. The mag-
nitude of the lifting of Q surfaces aloft is less than the mountain height, but the lifting is more
widespread. As parcels near the ground approach the mountain, they are first streched producing
cyclonic vorticity. Over the mountain, the parcels are shortened producing anticyclonic vorticity.

The total amount of cyclonic and anticyclonic vorticity are equalat each level and, as a result there
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Figure 8. The quasigeostrophic solutioryad for steady flow over a circular

mountain in a semi-infinite atmosphere. The plots show (top) total buoyancy

is not far-field circulation.
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The incoming flow is distorted by the mountain anticyclone. The perturbation velocity and pres-
sure field decay away from the mountain. (After Buzzi and Tibaldi 1977).
3.5 Planetary Scale
3.5.1 The Barotropic Response:
Let us assume that we are interested in the vertical integrated response. For simplicity let us
assume constant density and uniform Q. However, a similar results can be obtained by the verti-
cally averaged eq 3.19, weighted by the density. The averaged Q is then:

<Q0>=D2<<po> +(fo2/HN(2) 20020, - (fo2/HN(2) 2002}y ttom Eq.3.5.1
where <F> indicates the vertical integral of F divided by H the height of the fluid layer.
recalling thaf opoz=b=g6 /O,

<Qp>=01%<g0> +(fy HN(2)29 8 /O0)op (f/HN(2)298 /O0)pottom  EG. 3.5.2
The average Q is affected by the averaged relative vorticity and by the temperature anomalies at
the boundaries. SinceQy>=cte, the deviations of a state at rest will imply that:

[12<g0> =~(fyy HN(2)298 /@)t (f/HN(2)298 /@)pottom Eq.35.3

It is easily recognized that the RHS represents the thickness between the material surfaces at both
boundaries. In fact the time variation of the vertically averaged vorticity is given by:

dO2<qo>/dt=fo(Wyop-Whottom/H. Eq. 3.5.4
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remember thatv=-d(fy/N(z)29 0 /©) /dt. The relation between temperature anomalies at the
boundaries and the vertically averaged vorticity can be simply seen if we assume that the upper
boundary is flat w=0 no temperature anomalies at that boundary, Then,
02<@o> =+(fy/HN(2)298 /O0)pottom
a warm anomaly at the surface (lower boundary) corresponds to positive vorticity (cyclonic) and
a cold anomaly corresponds to anticyclonic vorticity. Furthermore, gioeRy/f, a warm
anomaly (cyclonic vorticity) impliego<0 andr, and pressure, to be minimum (Low) anticy-
clonic vorticity corresponds to a maximum in pressure (High). These conclusions can be extended
to the topographic response.
Since the lower boundary is assumed isentropic
(fo/HN(2)29 8 /Og)pottom=-(fo/H)*N(x.y)

[h>0, cold anomaly and h<0 warm anomaly]

D2<<po> =-(fo/H)*h(x,y) , h>0produce anticyclonic vorticity

[1%<@o><0. as discussed in 3.4.

3.5.2 Orographic response in a beta plane.

If beta is different than zero, from eq 3.19
<Qu>=002<g0> +B(y-Yo)+(fg2/HN(2) 2902} (Fo2/HN(2) 2002 )otiom EQ. 3.5.5
since in the steady state:

J(@0,Qp)=0 Eqg. 3.5.6
assuming a flow bounded by a rigid lid at z=H and a topography disturbance h(x,y) at z=0.
The boundary conditions at z=0 and z=H are

w(X,y,0)= J¢po,h(X,y))=-I(po, (fo/N(z) 2900Z) }yottomand w(x,y,H)=0 Eq. 3.5.7
Eq 3.14 with b.c (3.17) has the solution:
<Quy>=F (o) and h(x,y)+§/N(z)2poz=G(@o) Eq. 3.5.8
if G=0 is the isentropic b.c, the temperature surfaces at the ground are parallel to the surface
topography. The first relation in (3.5.8) is the conservation of Q along streamlines. The functional

form of F can be determined by the knowledge of the relation of Q @@t an inflow boundary.
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3.5.3 Channel flow over a ridge.
Let us determine the solution for this case:
at the left boundary say xeo:
@o(-00)=%(y) =-Up(y-Yo) and
Qo(-20)=B(y-yo)=—R/Ug¥(y)
The@o(X,y)=—B/Ug @o(X,y) wherego(x,y)=(y)+@x,y) Eq.3.5.9
Substituting eq (3.5.9) in (3.5.8) we get:
chp+B/U0 @=-fo/h(x,y)/H as in the case witH3=0 the vorticity is given
by the planetary vorticity times the mountain height scaled by the total height. The difference is
the extra term do to the meridional advection of planetary vortf8ity, . In this case waves can
exist even in the region of h(x,y)=0.
IfU0>0 2= —B/Ug @
Rossby waves are possible. Solving the Poisson equation the wavenumber for the steady response
is given by:
k2+12=B/U, Eq. 3.5.10
where k and | are the zonal and meridional wavenumbers respectively. The wavelength of the
response downstream of the ridge can be estimated assuming the gravest mode in the meridional
direction ITUL where L is the width of the channel~6600km, 1=0.476%10
B/Uy=1x101°m? gives a value for the horizontal wavelenght 7000km.
Energy arguments can be used to explain the fact of the response is only in the downstream direc-
tion. The dispersion relation for Rossby waves is:
0 = Ugk-Bk/(K>+1?) Eq. 3.5.11
The observed frequency is equal to the intrinsic frequeBkitk®+12) plus the doppler shifted
frequency due to §) For the steady responge=0 and the wavenumbers satisfy (3.5.10). The
phase velocity Cpeyk=U,-B/(k?+1?), the waves tend to propagate westward but in the present of
an eastward mean flow can became stationary. The group velocity
Cg=(Ug+B(k%-12)/(k2+1%)2, 2B(KI)/(k2+1%)?) Eq. 3.5.12
The energy in the downstream direction will be advected with the group velocity in the x direc-

tion Cgx >0 fork?>|? as it is in the case of the figure. It is easy to show that for the steady
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response the wavenumbers satisfy (3.5.10) the group velocity is in the downstream direction. Itis
also noted from (3.5.10) that fop 0 the flow is westward and the solutions do not generate

waves (the solution decays exponentially from the forcing area), because Q cannot be conserved.

Numerical simulations with a barotropic flow (westerly/easterly) were performed by runing the
ZETA model with constant basic velocity on a channel in spherical coordinates. The results are
displayed in figures 9 and 10. In the first case, Uo=40m/s will generate a quasi-stationary wave
with a wavenumber that approximately satisfies 3.5dt, [(k2+I2)}:sqrt{ B/Ug}=0.5x10 6
mL or the wavelength [=2p/|k|=12.48 x*$n or 12480 Km.
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Figure 9 shows the initial value solution of a constant flow |=40m/s at the left boundary on
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a spherical channel. The figure shows the barotropic streamfunction ( anomaly) velocity vector
and topography at 15 days. A wave pattern is visible on the lee side of the mountain ridge (right

side). Note that the wavelength is much larger than the width of the mountain ridge.
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Figure 10. Shows the solution for an easterly wind Uo=-40m/s. No planetary waves are generated

in this case. Only the anti-cyclone over the mountain is generated.
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3.6.Summary of the possible flows in a stratified rotating atmosphere.
In light of the previous discussion, let us summarize the mountain response for the different range

of parameters, Ro and Fr numbers.

Fr=Nhy,_
U

I
Non-Lineflf\r 3-D Flow

| Horizontal Divergence O(1)

| Wave breaking and stagnations

Flow influenced by both : o
rotation and stratification  Flow influenced by stratification

=
I
I
I
I
I
I
I
I
I
-
I
I
I
I
I
I
I
I
I
|

H=f, L/N | H=U/N
Quasi Geostrophic Flow Linear Gravity Waves
Horizontal Divergence O(Ro) Horizontal Divergence O@}r
Lee-cyclogenesis

Mountain Height Normalized by U/N

A=500km |
Flow influenced by |
rotation. | Mountain Lee waves
Quasi-stationary wavebk A=10km
A=5000km !
RO <<1 Il R) >> 1 RO_:_l_J____

Inverse time scale normalized by U/L
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I) UNSTABLE WAVES
4. Barotropic Instability.

This instability is a consequence of the variations in vorticity of the basic state, and is equally
present in non-geostrophic as well as quasi-geostrophic flows.

What is arunstable wave?
If we have the dispersion relation) = f(k,y, U, N2, f) suchtoat casnplex If ® (k,y,z)
Is and eigenfunction that satisfy the boundary conditions:
0, = (k, y, &'
and W = W tiw; ,then

= gtwt it

Q= ok, y, 2e
The eigenmode will be an exponentially growing solution. We will called them unstable eigen-
modes.

4.1 Edge waves in a shear flow:
Assume thaff3 = 0) (f = fy = const)

A
y

cl

Fig 4.1.1 Zonal basic state
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The absolute vorticity is conserved and sifisé the relative vorticity is also conserve.:

14 _
m+VDZ =0

where ¢ = 02y and} = total streamfunctionis given byyy = ® + @

The basic zonal velocity is given in layer | by:= Up * Uyly and in layer Il by
u= Ug + Uyl Y- Since the basic state vorticity is constant in both layers. The perturbation vor-

ticity equation from eg4.1.1 is given by:
0

dth' + v'/izz 0 (4.1.2)
5 0

( = LIJyy = a/(—u) = —Uy As a conclusion is the perturbation vorticity is zero initially
(t=0) will be zero for all t{' = D2(p =0
The solutions in each layer will be:
0%, = 0
0%, =0
@ = @ (y)elkx-o)
O, = (p”(y)el(kx—oot)

D2 = —k2g, toy, =0

o (y) = etky
So,

¢ = (pl-l-/-eikyei(kx—wt)
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@ = (pﬁ/'eikye' (kx — wt)
Now, as y— +o0 or -0, (p should - 0, so

@ = @ e Vel (kx-wi) (4.1.3)

@ = @fekvelkx-ot) (4.1.4)

All the activity occurs at the interface of these two layers. The pressure and the normal velocities
should be continuous across the interfiqce

@ = @ (4.1.5)

For v to be continuous at y=0 and

auI )

6u| au” au”
— + O = i
ot Oox

+v, 0, = — +U0y—
Vityt = 3¢ ™ Hogx
Replacing eqs 4.1.3 and 4.1.4 and using 4.1.5 we obtain the dispersion relation for the edge wave.

w _ -, Oy —Oyy)
¢ =g = Og+— 5 (4.1.6)

It shows that the edge wave propagates with the speed of the interface vejonigitied by
the difference of the vorticity of both layers. If the vorticity in layer | and Il are the samg c=U

The interpretation is similar to Rossby waves generated by a the variation of planetary vorticity,
here is due to the variation of basic state vorticity.

4.2 The Unstable Mode (Interaction of two edge waves)

Let us take a simple flow such#tonstant:
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So for

The caseinwhichweinclude athird layerwith constantflow like the following:
| |

I I
I > | y N |
/ \ _
L e : / \ : Wy = UK - (ully/2)
L __ W k¥ NAN T
i
' \ N waves “feed”
U N Vw7 R one another
S R T S _ - — - _ ét \ T = u|_k + (u||y/2)
I = I I
1 N v Ay
= = ~ 7
When Cu=¢=Uy ~ _~~/

Fig. 4.1.3 A shear flow sandwiched between two layers of uniform flow. The two interfaces
and the perturbation stream function are also shown. Arrows of normal velocity at each interface
(full) and the induced velocity (open) are also shown.

The edge waves are phase lock and instability can occur.
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DZDlexp(—4k|_) BZE 4.2.)

Q_) =
EHT
The maximum growth rate is given by:

Imag)ma=0.2012J),,  for kL=0.3984

This barotropic instability is exactly the same as in the nonrotating case. This unstable flow was
studied by Rayleigh (1880). Since in the nonrotating case the basic state can be consider equally a
function of the vertical coordinate z instead of a function of y. The stabilized effect of buoyancy
due to density variations in the mean state modifies this instability. The instability due to the ver-
tical shear and stratification is the well know “Kelvin-Helmholtz instability” (H. Helmholtz(1888).

The dispersion relation (4.2.1) only has imaginary roots when the wavenumber K is less than a cut-

off wavenumber I§, KL < KyL=0.6392.

It can be deduced from Fig 4.1.3 that’ <O in the middle layer. For unstable waves the eddy

kinetic energy should grow at expense of the basic state.

0 _ 07,2 .D__.—,d_U
EKG_E% +V 0= u'v

Since Y>0,u’v’ <0 for Kq to grow.

4.3 Necessary condition for instability.

It should be note from the previous analysis, that in order for the flow to became unstable, the ex-

istence of two waves propagating in opposite directions is a “necessary condition” for phase lock-
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ing.
The phase velocity for each edge wave was given from 4.1.6 as:

(Oy; —Typ)
+__y__2_k_y__ 4.3.1

_ W _ _
The relative phase speed depends on the vorticity differences at each interface, for a continuous

flow it will be proportional to d/dy=- Both edge waves should have the same phase speed for

Uyy-
phase lock. The effect of the vorticity gradient will be reduce the phase speed for the upper edge
wave and increase for the lower wave. It Is a necessary condition for instabilityCialgtiths dif-

ferent signs in both interfaces, such to make one edge wave move faster than the interface velocity
and the other to be slower than its . Rayleigh (1880) derived the necessary condition for a general
barotropic flow.

Assume a periodic channel in x bounded by two rigid walls at y=+/-L.The x-momentum equation

is:

P
Ug+(UU), +(vU), = —

WherdJ=U(y)+u andv=v,.Take azonal average

0 n O
Ui+ (Y )yt (VU)y :/Z%( any derivative w.r. t is zero.

U+ %(V_u) =0 can take(% outside v sincg tv, = 0.
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L L

— a I
J'Utdy = —J'W(vu)dyz 0 4.3.2
L oL

If we integrated over the meridional extent of the channel

due to the boundary conditions v(+/-L)=0. The total mass transport is conserved.
The vorticity is given by:z = —Uy and the mean flow is given by:

y
u= U(—L)—IZdy
-L

the zonal flow at the

boundary y=L channel is given then by:

AL

U(L,t) = U(-L) - J’Izdydx [% 43.3
0-L

Imagine that an interfaagdivides the channel in two layers the upper and lower as in the figure

—
Y /< cu
QL
——————————

The flow at y=L given by 4.3.3 is constant in time due to condition 4.3.2 and is

below.

E An N
U U 1 4.3.4
U(Lt) = U(—L)—Xg‘[ludydx+‘r‘rzl_dyd>€ -
n 0—-L O
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the vorticity at each side of the interface can be expressed to the first order Taylor expansion as:

dg

dd
_ =28 435
dy CL

Zu - - dy
The first integral can be split it in two: from L to zero and from zemp tosimilarly the second

one fromn to zero and from zero to -L . Integrating the contribution frgpand using the expan-

sions for the vorticity (4.3.5). The integral (4.3.4) can be expressed as:

AL AO A 0
U U 1 dg 2
O(Lt) = U(—L)—ngzudde”zLdyde, d_§/” o 436
0 0-L 0 O

It is easy to see that can’t be any contributions from the last integral since the two first integrals

cover the entire channel. For unstable waves it should be expectgdatiiagrow in time and

sincen? is definitely positive, the necessary condition for instability is:
A

d¢_ 2 . _ The vorticity gradient should
_[d_n dx =0 change sign in the interior of
0 y the domain
Itis clear also that if the vorticity gradient of the basic state does not change sign in the interior of

the channel the condition is sufficient for stability.
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4.4 Necessary Condition for Instability in a baroclinic flow.

The previous condition derived by Rayleigh was generalized by Charney antl($&&2) for a
quasi-geostrophic baroclinic zonal jet, characteristic of the mid-latitude winter circulation.
Let us consider the stability of a flow as shown in the figure.

U(y,Z):'LIJy(y,Z)

J
12KmM——]
Om/s
8Km|
4Km
2
20N 45N 65N

Where the potential temperature is given by the thermal wind relation:
Y..2=(g/)O(y,2)/0g

The quasi-geostrophic potential vortic@y,z) is given by:
_ féop, O
QY 9 = Wy +Bly-Yo) + LU0 4.4.1
Prin(z) TS

If the system is perturbed with a periodic disturbamf{gsy,z,t),and since in the quasi-geo-
strophic systenQ is conserved.

%_?:O Q=0Q(y, 2+a(x %z 9 4.4.2

expanding d/dt to the first orde%—? +U(y, 9q, + V(_Qy =0 443

1. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci 19, 159-172.
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Let qOq(y, z)ei(kx—oot)

V=0,
f&p
2 OD r
q = Dp+— ENchZDZ 4.4.4
. w - _ _ W
|kaj(y, 2) % + |k(pr(y, 2)=0 C= K 4.4.5
we get:
PQ,(Y: 2)
- 4.4.6
(U(y, 9 -c)
Now multiply q byp,®; @ = complex conjugate d@f
2 -
[P, Qy(Y: 2
02+ £2 oH = — T 4.4.7
0 020 155 (o] (. 9-0)
Taking the volume integral of 4.4.7
Lo P 09 P, Qy(y: 20
2+ f2g - Ejdxd dz = Tixdydz 4.4.8
JO’J’LJO’[pr(p P 0?02 4 .UID (U(y, z) oo

assuming that the flow is bounded by rigid walls in the north and south v(+/-L)=0 then the first left
terms gives:

HL

_I I pr(|(PX|2 + |(py|2)ddeD The Eddy Kinetic Energy
0-L

Integrating by parts the second left term of eq 4.4.8 leads to:

H fgcp ENZ(pZD dv = .[o.r LNZpr|cpZ| olyo|z+J'Uf2a Er—riip—zudydz)
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The first term on the right side is the Eddy Potential Energy and the second one gives the contribu-
tions of the upper and lower boundary.

HYnN

— 2
J’ Oaz%’ 2cpz%jydz J’ f B) NZ(pZBHy|O 4.4.9
0Yg
Since the boundaries at z=0 and z=H is given by W 0

1db _ [fODO
N2dt

_m.9 _
~20bt U(z-O)a—X%pz+vfocpzy} =0 4.4.10

It easy to show that at the boundaries
0= =2
* (U-o
substituting 4.4.11 in 4.4.9 we get'

4411

O 0’
Y4
jfopwzdvlo j Nz o Wlo

SinceC=G+iC;, appears only in the above boundary contrlbutlon and on right term of eq. 4.4.8.

The real and imaginary parts could be separated from eq. 4.4.8 as follow:
We can break this up into real and imaginary parts...

_ prr5y£0—0r2+ iciz)lcplzdyoIZ
(U-c)+c

the real part

YN — 2,— — 2=  —
_ U@~ (U-c) prlel"Qy(U —c;)
~[[(Re+ Pedydz+ [ ——— ~dylg = o 5 dydzasrz
Y, (U-c,) +¢ (U-c,) +¢

and the imaginary part gives the necessary condition for instability for Ci non zero:

YN _ 2 2_
fop U P e Q
—ciI O A9 dy||_| = C-I ! Y dydz 4.4.13
N2 ;i 2 2710 I _ 2 2
Ve (U-c,) +¢ (U-c,) +¢
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Then we have aecessarycondition for instability. (But, ccould still be zero anyway)
If the above equation is not equal to zero, then it is a sufficient proof of stakikty)c

The real part (eq. 4.4.12) gives a sufficient condition for instability.

{1} Internal Jet ((_2y z0) butU,=0 atthe boundaries

Inspecting eq. 4.4.13 for this case. SiﬂgE 0 at the boundaries, then

Qy = Oshould be satisfy for an instability to occQ@y mustchangesign in the interior.

() In the barotropic case, where

Qy =-Uyy*+B 4.4.14
poéﬂle

@9r= 0 , our

U yy term must be positive.

(Only happens in the tropics)

{11} Baroclinic flow z - o (Only one boundary effect)
Let us make the assumption that

U =Uy+Az andp, = Constant

Now,
Qy = }_J/J?B 1354
y = P9y tP- z
0

for this case it reduces to:
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Qy=18
Then balance in the equation 4.4.13 is between the volume integral involvi@/Qy B and the
integral for the contribution of the lower boundddy,  (z=0); i.e., (boundary effect at z = 0). As we
will discuss model later in this section. Charney’s unstable modes are due to the interaction be-
tween a westward propagating wé_)ga: B and an surface edge waveldiye to at z-0.
A similar instability arise in a more simplified flow. The Eady model, is perhaps the simplest baro-
clinic unstable flow. Consider af-plané:y =B =0 , butthe model hagclid.

Equation 4.4.13 for this case, even tho@h: 0 , there is a balance between our boundary ef-

fects at the lower boundary and at the rigid lid (e.g., tropopause) that will also make (4.4.13) equal

zero, and give us an unstable solution.

4.5 The Eady model:

By Ty

For both models, we haué = U,+ Az ,soour potential temperatufe is:0, + ' z—

Ug(Z=H)=Uy+AH/2

Uo(Z=H/2)=Uj,

Uo(Z=0)=Uy-AH/2 X

1. Eady, E/. J. 1949: Long wave and cyclone waves, Tellus 1, 3, 33-52
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Since the basic state Qy=0 the perturbation q’ is also conserved.
0

dq _
a"'v y = 0

If g'=0 at t=0 is zero for all times. The interior equation is then:

2
+ + b =0 45.2
Pyx (pyy |\Iz(pzz - e
and with the boundary conditions:
do
d—tz+/\ch:O atz=0,H 4.5.3
the solution to 4.5.2 is
0= (q;peuz + (mee—UZ)ei(kx + ly — oot) 454

wherepl =(N/f)(k?+1%)°%-2 from eq. 4.5.2 and the boundary conditions at z= and H are:

at z:}EUh+/—\§I_—I—chpZ—(p/\ =0 455
and atz%b]h—/%—c}(pz—(p/\ =0

Substituting the solution 4.5.4 in both boundary conditions 4.5.5 we have an homogeneous system

for both amplitudes;
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AH H)/2 H)/2 H)/2 H)/2
EJ*‘ 2D }(UA(H) _uBe M2y _ (pdHH) 2, geHH)/2y o

4.5.6

E’Jh /\HD J(HAG (uH)/ 2 Be(uH)/Z)_(Ae—(uH)/2+Be(uH)/Z)/\:

For non trivial solutions the determinant should vanish, given a condition for C.

C = Uhi/H\[((uH)/Z—tanh(uH)/Z)((uH)/Z—coth(pH)/Z)]llZ 457

There are two real roots for Cysl/2 > 1.1997 and two imaginary roots faf/2 > 1.1997.

The maximum wave number is faH/2 =0.8.

2
_ 21 f5 _
Amax = 7 4000 km (for = 1074 458
The growth rate for the most unstable wave is
fO . . , L
W = 0'308N/\ (the imaginary part ofo) with a doubling time

9o _ _
In =wt In2-= Wity

The growth rate and phase velocity vs. the horizontal wavenumpeét are:
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wi=growth rate Cr=phase velocity

0.308

U(H/2)

U(0) I
Jds 119 HH/2 d8 1.19 uUH/2

The regions of instability as a function of vertical shear and wavenumber is shown in the next fig-

ure.

dUp 2 neutral roots 2 imaginary roots
az— Unstable
| Stable
‘g pd
20 =
£ o o
X - I
T T 5
S '3 E
3 61
10— 2.4x10°s
\\/1.8x106s;1
| K;/?l.leoﬁs'l
/o.6x1065'1
! _2n
2x10°Km  4x10°Km  6x10°Km (K2+12)05

The structure of the wave can be seen in the following cross section.
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Fig 4.5.1 The potential temperature anomaly (shading), the meridional velocity v (contours) and
the zonal and vertical component of the perturbation velocity as function of z and longitude in the
middle of the channel.

Notice the westward tilt of the meridional velocity (similar to the stream function) atfo(i3

degrees. is one quarter of the total length 55 degrees). This tilt is require for baroclinic instability
since provides a poleward heat flux. Warm air moves to the north (V>0) cold air to the south
(v<0). The air is ascending in the warm side and sinking in the cold side. This structure could be

better seen is eq 4.5.4 is cast in the following form
0 = |o(2)|e®tcog(ly) cos(kx + 3(2)) 4.5.9

A 2 G 2 _ i sinhpz
|(2)| = | cosh pz+———25|nh uz} ando(z) = tanh [_2—_005}112}
ulc| uc|
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for the amplitude and the phase. The phadd)~TV2 for the most unstable wave as shown in fig

4.5.1. The potential temperature however has two compofges(kx+9(z)) and

®d,sin(kx+0(z)) and is tilted to the east. The surface fields are shown in fig 4.5.2

10°W 0°E 10°E 20°E
LONGITUDE

Fig 4.5.2. The potential temperature anomaly the surface wind and contour of total potential tem-
perature is shown for the solution at 3.5 days.
As previously discussed a neutral edge wave would have relative vorticity collocated with temper-

ature field. In the unstable solutions due to the interaction with the upper edge wave the centers of
vorticity are slightly out of phase such that there is a net meridional advection over the maximum
and minimum temperature disturbances. This circulation enhances the potential temperature

anomaly that in turn strengthening the cyclonic (warm) and anticyclonic (cold) vorticity field.
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4.5.2 Meridional momentum, heat and PV fluxes

The zonal momentum equation reduces to:

Ui= —aa—y(u'_\/) + f\/_a the last term is the ageostrophic circulation. 4.5.10

= 0 ,5av 0 ,=an —nA
the heat equation 6; = ——(v'0') —==(w'0') — W0 45.11
quation 8; =~ 5-(VE) ~ 5-(W8) 78,
and the zonal mean potential vorticity:

9 (Vq") is possible to show that the meridional flux of

0Q_ _0
ot oy

quasi-geostrophic vorticity is related to the meridional momentum and heat flux divergences. For

the replacing the definitions of v’ a®land q":

f2 O f2

— _ o H,  To ., H_ 0
Va = (pX%DZ(p * N_Z(pz% = OuPux T OBy F (px(pzzN_z 4.5.12
integrating by parts and using ()x=0 and rememberingftBepZ =Db = g—e IS easy to show:
0
I PO
vg= —(Uuv)y + N_Z(Vb)z 4.5.13
In the case of (uniform PV) q'=0 and then:
i(u'_v') = hi(v'b') 4.5.14
oy N20z

For the particular case of the Eady solution 4.5.8 is possible to show that the momentum fluxes

are: (pX(pyE 0 consequent%a—z(v'_b') =0 or Vb =constant the heat fluxes are
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constant in the vertical column. As a consequence from eq 4.4.5 the z-derivative of the phase

times the amplitude square should be constant with z.

Vb = constant=é(z)zlcp(z)|2

For poleward heat fluxes v’b’>0 the phd%g) should increase with height, the stream function
phase for unstable waves then should tilt to the west with height. A neutral solution has no tilt

0(z),=0 andd(z),<0 corresponds to a decaying solution.

4.6 The Charney Modet

A more realistic atmosphere it is consider in the Charney model, with the following changes:
a beta plane instead of the f-plane consider by Eady, a semi-infinite atmosphere and the density
varying with height.

p=pgexp(-z/Hs), f=f+b(y-yp) and U=+Az
Potential Vorticity is not longer uniform

f0
PrNG

(_Qy = B- (pIrUZ)Z 4.6.1

and for a flow with constant vertical shear 4.6.1 became:

_ fo
Qy = B+——=U; 4.6.2
HNg

So for this case the conservation of Q gives:

1. Charney, J. C 1947: the dynamics of long waves in baroclinic westerly current, J. Meteor. 4, 5, 135-162.
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[0 Oy, vl —
e U(z)aXEg +vQ, = 0 4.6.3

and assuming as before a wave solution for the stream function we can rewrite 4.6.3 as:

2
175

(U@ —c){a2<p+ e

(pr(P)Z} +¢Qy =0 4.6.4
with the same boundary condition at z=0 as before:
(U(0)-c)p,-Np =0 at z= 465
the boundary for z-> infinite will be taken to be the vanishing kinetic energy density of the pertur-
bation. Ilzro? p(p2 =0

the substitutions

_ 2A _ 2A
¢ = T(U_C) = 2Az+ T(UO_C)

1
X = (p(z)e)(pgb\_ﬁ 4.6.6

and

- Nk?, 1
0,0

aH°

reduce equations (4.6.4) and (4.6.5) to:

53



A X_gdX,

g a0

4.6.7

1 1 2A
X—O%—égb =q +§atéo = Z(Ug-c) 4.6.8

The constants N, a and p are defined as follow:
r=0.5Q+1)/sqrt(F+0.25), A=PN2H/(Af?), a=0.5(1-(sqrt(1+49)* and p=A->H.
The problem became one of determining the eigenvdlgésterms of the non-dimensional wave

numberp and the non dimensional paramatevhich depends on the raf@i/\.

Equation (4.6.7) is a special case of the confluent hypergeometric equation

2
d X dx _
Eﬁ +(b—2)ﬁ—ax =0

4.6.9

with two independent solutiord(a,b £) andEl'bI\/I(a-b+1,2-b§). The second one diverges at

infinite and the first one is regular.

By a method of trial and error Kuo (1952)alculated c for the range 0<r<1. Green (1§6§33)Icu-
lated numerically with an atmosphere bounded rigidly at z=H (similar to Eady’s model). The

growth rates for the three models can be seen in the figure below.

1. Three-dimensional disturbances in a baroclinic zonal current. J. Meteor. 9, 260-278
2. A problem in baroclinic stability, Quart. J. R. Meteor. Soc. 86, 237-251.
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The structure of the Charney mode, Kuo’s calculation for the most unstable wave is shown below.
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Fig 4.6.5 Contours of growth rates as a function of non-dimensional wavelength and shear for
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Fig 4.6.5 Contours of growth rates for the Eady’s model for the same scaling variables.
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